Tag Archives: skidaway institute

R/V Savannah gets an overhaul

By John Bichy, Marine Superintendent

As part of the R/V Savannah’s biennial maintenance schedule, the ship was hauled out at Stevens Towing shipyard on February 17. Located on Young’s Island, S.C., near Charleston, the shipyard is close to the ship’s home port on Skidaway Island and offers top quality commercial yard services.

These shipyard periods are necessary to conduct maintenance projects that can only occur when the vessel is out of the water. This year’s projects are routine with the primary scope of work to resurface the bottom shell and top side shell coatings. Other projects include replacing the port shaft seal and standard gauging of the hull plate to measure steel thickness.

A good portion of work is conducted by the ship’s crew. Crew projects this year include, resurfacing the exterior decks, rails and superstructures; cleaning fouled pipes; and installing equipment such as a new replacement satellite communications antenna for the ship’s Fleet Express broadband internet service, to name a few. The crew understands this is a critical time for maintenance. It’s their home for much of the year, and they take a great deal of pride in making her the best platform she can be.

New equipment system expands UGA Skidaway Institute’s research capability

A new equipment system is providing researchers at the University of Georgia Skidaway Institute of Oceanography greater capability to study the extremely rare, but essential chemicals in the ocean.

Trace elements, like iron, cadmium and zinc appear in the ocean in very small concentrations, yet they are vital for many oceanic processes. For example, the relative abundance or scarcity of iron is often the limiting factor for the growth of microscopic marine plants known as phytoplankton. These single-cell marine plants serve as the base of the marine food web and also produce about half the oxygen in our atmosphere.

According to UGA Skidaway Institute scientist Clifton Buck, measuring and studying trace elements in the ocean is a significant challenge.

“The concentrations we’re talking about are just so incredibly small, down to parts per billion and parts per trillion, and, so, one of the of the challenges that we face is how to collect water samples in a way that we don’t introduce contamination into the water that we’re trying to collect,” Buck said.

Buck, fellow UGA Skidaway Institute researcher Daniel Ohnemus and marine superintendent John Bichy applied to the National Science Foundation for funding to obtain a system of highly specialized equipment that will give UGA Skidaway Institute’s Research Vessel Savannah the capability of collecting contaminant-free samples in coastal waters. The system–manufactured by SeaBird Scientific–is based on a frame, called a rosette. The rosette is built of aluminum and titanium components which greatly reduces the contamination risk because these metals do not readily dissolve in seawater. The frame itself is also “powder coated” to provide additional protection. It can collect water samples from as deep as 2,000 meters. The rosette holds 12 plastic collection bottles that can be triggered to close by sending electrical signals from the surface. It also carries a number of sensors that measure characteristics such as pressure, temperature, salinity, oxygen concentration and more.

The trace metals rosette in its packing crate.

“So that really gives us a lot of power now, to be able to do relatively high-resolution sampling of the waters around the South Atlantic bight and out to the Gulf Stream, using the RV Savannah as a platform,” he said.

Buck and his colleagues are also working with Woods Hole Oceanographic Institute, which is building a specially designed winch with a dedicated non-metallic cable.

The system will be available for use by scientists outside of UGA Skidaway Institute. Researchers can use the R/V Savannah through the University-National Oceanographic Laboratory System to study coastal waters from Chesapeake Bay to the western Gulf of Mexico. They can also request the equipment be shipped to them to use temporarily on their own research vessels.

Equipping the R/V Savannah, which typically operates in continental shelf waters, reflects a shift in focus for Buck and the trace elements community as a whole. In the past, the emphasis of most trace element research was on the deep ocean, with lengthy transect cruises, thousands of miles long, that mapped trace elements across a wide stretch of ocean.

“Trace element scientists are really starting to focus more along the margins, things like rivers,” Buck said. “And the actual continental shelf sediments themselves are big influences on trace elements and as a supply and as removal functions.

“So, we are getting into using smaller ships going into shallow water, and doing what we call process studies, wherein you identify some sort of process that you think might be happening in a region, and you spend some time there to, to really kind of tease out the relationships, whatever they may be.”

The project is funded by NSF grant 2015430 totaling $182,625.

Evening @ Skidaway lecture series returns in virtual format

After a lengthy hiatus due to the COVID-19 pandemic, the University of Georgia Skidaway Institute of Oceanography resumed its 2021 Evening @ Skidaway speaker series in February. The talk was the first of 11 Evening @ Skidaway programs to be presented through November.

The programs were initially presented via Zoom, but were subsequently moved to UGA Skidaway Institute’s YouTube channel and will begin at 7 p.m. Evenings @ Skidaway will continue to be presented virtually until it is possible to safely resume in-person gatherings.

Tuesday, April 13 – Dan Ohnemus, “A Look at Climate Mitigation Solutions: Ideas for the Century Ahead”

Tuesday, May 18 – Adam Greer, “The Secret Life of Ocean Critters”

Tuesday, June 8 – Clifton Buck, “Is it the Sun? Skepticism and Myth Making in Climate Science”

Tuesday, July 13 – Catherine Edwards, “Alexa, Map Fish Habitats! Artificial Intelligence for Robotic Fisheries Management”

Tuesday, August 10 – Open Lab Night, Labs TBA

Tuesday, September 14 – Clark Alexander, “I’m all shook up – Earthquakes and Tsunamis”

Tuesday, October 12 – Marc Frischer, “Climate Change and Shrimp Black Gill – Is There A Connection?”

Tuesday, November 9 – Jay Brandes, “The Ocean’s Plastic Problem – A Very 21st Century Pollutant”

For additional information, contact Michael Sullivan at (912) 598-2325.

New weather station goes online

UGA Skidaway Institute’s new weather station became operational in early May.

The weather station includes a 30-foot-tall tower on the pier at Priests Landing. It has a Gill Instruments GMX531 Weather Station, collecting wind direction and speed, air temperature, relative humidity, atmospheric pressure, solar radiation and precipitation at five minute intervals. The station is powered by a solar panel, and data is sent by a cellular link to a website for display. This installation is part of a National Weather Service-funded effort to improve regional weather forecasts.

The available current and historic data can be accessed HERE. Select “Skidaway 1,” which is the 14th station on the list.
Weather Station 650p

 

UGA Skidaway Institute’s Edwards granted tenure

The University of Georgia has granted tenure to UGA Skidaway Institute of Oceanography / Department of Marine Sciences scientist Catherine Edwards. Edwards was also promoted from assistant professor to associate professor, effective Aug. 1.

OLYMPUS DIGITAL CAMERAEdwards is a physical oceanographer, with broad interdisciplinary interests in marine sciences and engineering. She earned a B.S. in physics with highest honors from the University of North Carolina at Chapel Hill, and worked as an ocean modeler at the U.S. Naval Research Laboratory before earning her Ph.D. in physical oceanography from the University of North Carolina at Chapel Hill. She joined Skidaway Institute in 2010.

Edwards’ research focuses on answering fundamental questions in coastal oceanography and fisheries sciences with autonomous underwater vehicles (AUVs). Using AUVs, also called gliders, she and her team are developing novel ways to optimize their use with engineering principles and real-time data streams from models and observations.

While at UGA Skidaway Institute, Edwards has been awarded more than $2 million dollars on 12 projects totaling more than $12 million from NOAA/Navy sources, the Gulf of Mexico Research Initiative and four different programs within the National Science Foundation. As the founder of a regional glider observatory, she serves as the lead scientist in a new project that places gliders in the paths of hurricanes to better predict their intensity at landfall. Edwards is a co-primary investigator in a large $5 million observational program studying exchange between the coastal and deep ocean at Cape Hatteras. In an effort funded by NSF’s Smart and Autonomous Systems program, Edwards is also working with researchers from Georgia Tech and Gray’s Reef National Marine Sanctuary to utilize gliders and acoustic tagging to track fish migrations.

Scientific serendipity: Researchers make surprising finding on ocean’s ‘thin layers’

Sometimes scientists start out researching one subject, but along the way, they come across something else even more interesting. This is what happened to University of Georgia Skidaway Institute of Oceanography researcher Adam Greer in the summer of 2016 when Greer was a post-doctoral associate at the University of Southern Mississippi. That fortuitous event resulted in a paper recently published in the journal Limnology and Oceanography with Greer as the lead author.

Adam Greer 1 650pGreer and his fellow researchers were on a cruise in the northern Gulf of Mexico to study the effects of river input on biological processes. They came across a natural phenomenon called a thin layer. These are oceanographic features found all over the world where biomass collects into a narrow portion of the water column–less than five meters thick vertically–and can extend for several kilometers horizontally. They tend to occur in stratified shelf systems.

“Surprisingly, there are few published studies on thin layers in the northern Gulf of Mexico, which is heavily influenced by rivers and highly stratified during the summer,” Greer said. “Thin layers are important because they are trophic hot spots, where life tends to congregate, and predators and prey interact.”

However, Greer said, thin layers are very difficult to analyze because they occur within a restricted portion of the water column, and most conventional ocean sampling equipment will not detect their influence on different organisms.

Greer and his colleagues were better equipped than most to study the thin layer. Rather than laying out a grid and taking a series of water samples, they were equipped with an In Situ Ichthyoplankton Imaging System (ISIIS). This imaging system was towed behind their research vessel and undulated through the water column, producing a live feed of plankton images and oceanographic data. By studying the video, they were able to map the distributions of many different types of organisms in great detail. The thin layer was composed of large chains of phytoplankton called diatoms and gelatinous zooplankton called doliolids.

Thin Layer 2

A crewman launches the ISIIS.

“Although we expected many different organisms to aggregate within the layer, this was not the case,” Greer said. “The only organisms that were concentrated within the layer were gelatinous organisms called doliolids. Other organisms that we expected to see, such as copepods, chaetognaths and shrimp, tended to congregate near the surface just south of the thin layer.”

The researchers determined that the area south of the thin layer was influenced by a surface convergence – two water masses colliding and pushing water downward at a slow rate. They believe that many organisms with active swimming ability, such as shrimps and copepods, could stay within the surface convergence, while more passive swimmers, such as doliolids would follow the trajectory of the thin layer and diatoms.

Thin Layer 1

An image from the In Situ Ichthyoplankton Imaging System passing through the thin layer. The long, slender filaments are chains of diatoms. The larger, oval plankton are doliolids

Greer and his colleagues discovered several other characteristics of the thin layer they had not anticipated. There was a higher concentration of live phytoplankton than expected. As a result, the thin layer also had a high concentration of dissolved oxygen due to the photosynthetic activity. The zooplankton were also aggregated into distinct microhabitats with different oceanographic properties — such as temperature, salinity and light. The microhabitats also contained different types and abundances of food.

“For a lot of these organisms, if you took the average abundance of food it wouldn’t be enough to survive,” Greer said. “So whatever mechanisms there are to create higher abundances of food, they are potentially really important for a number of different organisms.”

The other members of the research team were Adam Boyette, Valerie Cruz, Kemal Cambazoglu, Luciano Chiaverano and Jerry Wiggert, all from the University of Southern Mississippi; Brian Dzwonkowski and Steven Dykstra, from the University of South Alabama; and Christian Briseño‐Avena and Bob Cowen, from Oregon State University.
The paper can be viewed HERE.

UGA Skidaway Institute scientists participate in 2020 Ocean Sciences Meeting

The UGA Skidaway Institute of Oceanography was well represented at the 2020 Ocean Sciences Meeting in San Diego in February. The Ocean Sciences Meeting is the flagship conference for the ocean sciences and the larger ocean-connected community. The Ocean Sciences Meeting was co-sponsored by American Geophysical Union, the Association for the Sciences of Limnology and Oceanography, and The Oceanography Society.

Professor Marc Frischer said he was impressed by the efforts of the ocean science community to evolve the climate change dialog and narrative.

“As Margaret Leinen said in her closing plenary address, we started at ‘the ocean is too big to be affected’, to ‘the ocean is too big to fix,’ to where we are today, ‘the ocean is too important not to fix,’” Frischer said. “The call is for the ocean science community to become engaged in searching for solutions, and we have a lot to offer.” Leinen is the director of Scripps Institution of Oceanography.

Frischer presented some of his most recent work investigating the ecological significance of doliolids in continental shelf systems. In addition to that presentation, a student from Savannah State University, who worked in Frischer’s lab last summer, presented the results of work she conducted. Frischer mentored Ashly Rivera as part of Savannah State’s Research Experiences for Undergraduates program. At the end of each summer the REU students present their research and vote on who they think did the best job. The winner is awarded an all-expense paid trip to a science meeting of their choice. This past summer Rivera won that honor and chose to attend the Ocean Sciences Meeting. Ashly presented a poster titled “The Re-Acquisition of Shrimp Black Gill Infections by Penaeid Shrimp; Oceanic or Estuarine Sources?”

Ocean Sciences 650p

Ashly Rivera (r) at her poster presentation.

Assistant professor Catherine Edwards co-chaired a session on western boundary current-shelf interaction. The session was inspired by her and fellow Skidaway Institute scientist Dana Savidge’s ongoing research into ocean currents around Cape Hatteras, “Processes driving Exchange at Cape Hatteras,” also known as PEACH. Edwards also presented a poster on the vertical structure of Hatteras and Gulf Stream fronts as part of a large group of PEACH researchers. She was a co-author on four other posters and two talks, including posters by Savidge and UGA Skidaway Institute research technician Ben Hefner. Hefner’s poster explored data from the multiple nested high frequency radars at PEACH, using different combinations of radials to get realistic data over Diamond Shoals at Cape Hatteras.

“With their high wave energy and treacherous conditions for sampling, the shallow waters of shoals are a very difficult places to get good data,” Edwards said.

Edwards’ poster looked at the vertical layering at the boundaries of Mid Atlantic Bight, South Atlantic Bight, and Gulf Stream water. “You see interleaving of up to five layers in just 20-30 meters water depth, which is important for exchange of heat and salt between the deep and shallow ocean,” Edwards said.

Assistant professor Adam Greer was the lead author and presented a poster titled “High-resolution sampling of a broad marine life size spectrum to examine shelf biophysical coupling.” He was also a co-author for three other posters and one oral presentation.

Associate professor Clifton Buck presented a poster titled “Aerosol trace element concentrations and fractional solubility in the North Pacific Ocean: US GEOTRACES GP-15 Pacific Meridional Transect.” He was also the co-author on an additional poster and two talks.

Professor Jay Brandes lead an oral presentation on “Variability of microplastics in estuarine systems and consequences for organism studies.”

“Studies of microplastic pollution have really taken off in the last couple of years,” Brandes said. “There were two solid days of talks and posters on the subject from around the world, from basic studies to community cleanup efforts. This level of interest would have been unheard of in past meetings.”

He was also a co-author for three poster presentations. Graduate student Kun Ma was the lead author on one of those poster presentations, “Constraining photochemical production rates of dissolved inorganic carbon in the open ocean using the moderate dissolved inorganic carbon (DI13C) isotope enrichment (MoDIE) method.”

Marine scientists map fish habitats

by Alan Flurry

Beyond the barrier islands of coastal Georgia, the continental shelf extends gradually eastward for almost 80 miles to the Gulf Stream. This broad, sandy shelf largely does not provide the firm foundation needed for the development of reef communities to support recreational and commercial fish species including grouper, snapper, black sea bass and amberjack.

“Natural and artificial reef habitats are important to Georgia fisheries because they provide hard, permanent structure on the Georgia shelf, which is dominantly a vast underwater desert of shifting sands,” said Clark Alexander, professor and director of the University of Georgia Skidaway Institute of Oceanography. “The Georgia Department of Natural Resources has invested significantly over the past several years in developing the capacity to map these areas to enhance the management of these reef communities.“

To increase the availability of high-quality hard bottom areas off Georgia, the DNR began an artificial reef-building program in 1971 to deploy materials at various locations across the continental shelf, from 2 to 30 miles offshore. Reef materials include concrete slabs and culverts from road, bridge and building demolition, subway cars, ships, barges, and U.S. Army tanks. Because some of these reefs are far offshore and DNR resources are limited, the status of some of that material has not been examined for decades.

Ossabaw sound 650p sq

A bathymetric survey of Ossabaw Sound.

For the past five years, Alexander has been leading an effort to improve understanding of marine, coastal and estuarine habitats and functions using high-resolution sonar to map state water bottoms, with funding from the DNR Coastal Incentive Grant program. Alexander’s team has amassed critical depth and habitat information for five of Georgia’s sounds (Wassaw, Ossabaw, St. Catherine’s, Doboy and Sapelo), revealing deeply scoured areas where underwater cliffs have formed to create hard substrate where complex ecosystems and biological communities have developed.

“These inshore, hardbottom habitats should enhance biodiversity in the areas near these structures and enhance ecosystems supporting both commercial and recreational species across the continental shelf,” Alexander said.

Alexander is currently leading a new, three-year project mapping important fish habitats in state waters — the newly discovered estuarine habitats, and artificial reef structures within 10 nautical miles of shore – those areas most accessible to recreational anglers, boaters and divers. In addition, his research group is mapping previously unmapped portions of the sounds and tidal rivers deeper than 15 meters to discover the extent of these newly identified estuarine hardbottom habitats.

Skidaway Institute researchers will work with DNR to update the online “Boater’s Guide to Artificial Reefs” with accurate locations and imagery of deployed materials for these reefs. These new, more accurate artificial reef surveys will also document recent changes in the locations and integrity of placed materials and verify the low-tide water depths over all features in the artificial reefs to enhance navigational safety.

New high-tech microscope to bolster UGA Skidaway Institute’s microplastics research

A new, high-tech microscope is giving scientists at the University of Georgia Skidaway Institute of Oceanography a tool to study the tiniest particles and organisms in our environment in a whole new light. The Horiba Jobin Yvon XplorRA Plus Confocal Raman microscope uses lasers, rather than conventional light or a stream of electrons, to examine objects measuring smaller than a millionth of a meter or .04 thousandths of an inch.

“The way a Raman microscope works is fundamentally different from how conventional microscopes, such as those found in the classroom, operate,” UGA Skidaway Institute scientist Jay Brandes said. “With this instrument, a high energy laser beam is directed at the sample, and the instrument measures the light scattered back from it.”
OLYMPUS DIGITAL CAMERA

UGA Skidaway Institute researcher Jay Brandes with the Raman microscope.

What distinguishes it even more from traditional microscopes is a phenomenon called the Raman effect. This was discovered in the 1930s by Indian physicist Chandrasekhara Venkata Raman. With the Raman microscope, some of the scattered light comes from interactions with the molecules in the sample, and these interactions leave a spectral “fingerprint” that can be isolated from the laser light and measured. Those “fingerprints” can tell scientists what the material is made of, whether it is natural organics like bacteria or detritus, inorganic minerals or plastics.

“Because it uses a high tech, automated microscope to perform these measurements, maps of sample composition and even three-dimensional maps are possible,” Brandes said.

OLYMPUS DIGITAL CAMERA

The Raman microscope uses a laser to illuminate and analyze an object.

One immediate use for this instrument will be to study microplastic pollution in Georgia’s coastal environment. Brandes and a group of educators, students and volunteers, have been researching the microplastic pollution issue in coastal Georgia for several years. He says that locating and identifying microplastics in the environment or in an organism is difficult because of their tiny size.

“It’s not like it is a water bottle where you can look it and say ‘That’s plastic,’” Brandes said. “We see all kinds of microscopic particles, and, because they are so small and not always distinctively colored or shaped, it is difficult to distinguish microplastics from other substances.

“With this microscope, we will be able to look at a fiber and tell whether it is made of polyester, nylon, kevlar or whatever.”

Laser Microscope 3

A microfiber as seen by the Raman microscope.

Brandes and his team have been looking at the microplastics problem from several angles. They have taken hundreds of water samples along the Georgia coast, filtered the samples and analyzed the captured particles and fibers. The researchers also examine marine organisms, like fish and oysters, to see what organisms are consuming the microplastics and to what extent.

The instrument will allow sub-micron analysis of complex samples from a wide variety of other projects. It will be available to UGA Skidaway Institute scientists as well as other scientists from throughout the Southeast. In addition to benefitting researchers, the Raman microscope will enhance educational programs conducted at Skidaway Institute and the through the UGA Department of Marine Sciences. Once a set of standard methods and protocols have been established, it will also be available to support scientific research from institutions and organizations from around the Southeast.

The instrument was purchased with a $207,000 grant from the National Science Foundation.

UGA Skidaway Institute scientists to study aerosol dust’s impact on life and chemistry in the ocean

A team of University of Georgia Skidaway Institute of Oceanography scientists has received a 4-year, $1 million grant from the National Science Foundation to study how dust in the atmosphere is deposited in the ocean and how that affects chemical and biological process there.

The research team of Clifton Buck, Daniel Ohnemus and Christopher Marsay will focus their efforts on a patch of the Pacific Ocean near Hawaii.

OLYMPUS DIGITAL CAMERA

Daniel Ohnemus (l) and Clifton Buck

“Our overall goal is to look at the aerosol loading and concentrations in the atmosphere, the rate that dust is deposited into the ocean and what happens to it once it is in the water column,” Buck said.

The chemistry of the ocean can be changed by the introduction and removal of elements, including trace elements which are present at low concentrations. In some cases, these elements are known to be vital to biological processes and ocean food webs. Near the shore, rivers are a large source for material from land to the ocean. Beyond the reach of rivers, and for most of the oceans, material blown from land through the air is the largest source of trace elements to surface waters.

“The ocean and the atmosphere are connected. What is in the atmosphere ends up in the ocean.” Ohnemus said. “Some part of what is in the ocean gets recycled back into the atmosphere, but mostly the movement is from the atmosphere to the ocean.”

The material enters the oceans dissolved in rain or by settling of dust particles. Understanding atmospheric sources of trace elements to the oceans is thus important to understanding both global chemical cycles and patterns of biological production. The team will look at trace metals like iron, which may appear in extremely low concentrations, but are essential to the growth of phytoplankton, the single-cell marine plants that serve as the base of the food web and produce approximately half the oxygen in the atmosphere. They will also look at other metals, like copper and cadmium, which are toxic and have a limiting influence on phytoplankton growth.

“Long-term atmospheric and ocean measurements are really hard to get at the same time in the same place, but that is what we are trying to do,” Ohnemus said.

Beginning in early 2021, the team will begin collecting aerosol samples at the Makai Research Pier on the southeast or windward side of Oahu. They will also undertake the first of six cruises to collect water samples at a spot in the Pacific known as the Hawaii Ocean Time-Series Station Aloha. This is a six-mile wide section of ocean approximately 200 kilometers from Oahu where oceanographers from around the world study ocean conditions over long time spans.

Skidaway Hawaii Project 2 650p

This chart shows the location of the research field sites. Credit: Lee Ann DeLeo

A key goal of this project will be to obtain relatively frequent measurements over two full annual cycles. By taking weekly aerosol samples and water samples every few months, the researchers hope to be able to obtain a picture of how the atmosphere and the ocean change on a weekly, monthly or seasonal basis.

“It is important to point out that the dust transport over the North Pacific has a distinct seasonal cycle,” Buck said. “Dust concentrations are going to be different during the winter than they are in the summer.”

In the past there have been studies of aerosol dust concentrations in that region, but they were conducted at the top of the Mauna Loa volcano.

“That’s almost 12 thousand feet up, and not necessarily representative of what is being deposited in the ocean,” Buck said. “That is the leap we are trying to make here.”

The researchers chose Hawaii as the site for their field work for several reasons. Hawaii offers direct access to the remote, nutrient-limited open ocean. Hawaii also has strong seasonal fluctuations to its aerosol inputs, meaning there should be measurable changes over the two-year time series. The Hawaii Ocean Time Series has conducted regular research cruises to Station ALOHA since the mid-1980s, so there is already a historic collection of relevant data. From a practical standpoint, it also means the scientists will have regular access to those cruises to collect their ocean samples.

Although this project will not focus on marine plants, those plants are the reason the scientists want to answer questions about the marine chemistry.

“A very small amount of aerosol dust from a desert in China can provide enough nutrients to satisfy plant growth for weeks,” Ohnemus said. “So it can have a huge influence on which algae will grow where and how successful they are.”

Working with contractors from Florida International University, the research team will use a radioisotope of beryllium to measure the rate of atmospheric deposition. Beryllium-7 is created only in the upper atmosphere by the exposure of nitrogen and oxygen to cosmic rays, and has a half-life of 53 days. By measuring the concentration of beryllium-7 in samples, they will be able to estimate the deposition rate at which beryllium and other materials are being deposited on the surface.

The team will also contract with scientists at the University of Hawaii to collect aerosol samples on a more frequent basis than the Georgia-based researchers would be able to do themselves.

The project is funded by NSF Grant #1949660 totaling $1,074,114.