Tag Archives: oceanography

Girls Code Games Summer Camp at UGA Skidaway Institute

The University of Georgia Skidaway Institute of Oceanography, Girls Who Code and The Creative Coast presented a one-of-a-kind experience for middle school girls in Chatham County to learn about marine science and computer coding at UGA Skidaway Institute on Monday, July 11. The Girls Code Games Summer Camp taught campers to design and program a playable game related to marine science, all under the guidance of female scientists and programmers.

Research technician Karen Dreger displays the workings of an underwater glider to the Girls Code Games Summer Campers.

The program was created by UGA Skidaway Institute scientist Catherine Edwards and Savannah Arts Academy (SAA) senior and Girls Who Code co-founder Sage Batchelor. It included girls from 20 different public schools between the 5th-8th grades. Edwards and her team introduced the girls to underwater robots, including what they do, how they are programmed, what type of data they produce and how that data is used by scientists.

The camp continued the remainder of the week at Georgia Southern University, where Batchelor and a group of female counselors (seniors and recent graduates of SAA) taught campers to design and build a computer game using the information they learned about underwater robots.

Sponsors for the program include the City of Savannah, UGA Marine Extension and Georgia Sea Grant, Georgia Southern Business Innovation Group and Elevate Savannah.

Rivero-Calle selected for ocean sensor workshop

University of Georgia Skidaway Institute assistant professor Sara Rivero-Calle was selected to participate in the June 2022 Ocean Observatories Initiative (OOI) Biogeochemical Sensor Data Workshop. Rivero-Calle was one of only a small number of applicants to be selected to participate. Applicants were chosen based on their experience with the various sensor subtypes and their interest in using sensor data from the existing OOI observatories to address novel science questions. The workshop focused on best practices for accessing and using OOI sensor data and brainstorming its scientific applications.

Participants at the end of a three-day Biogeochemical Sensor Workshop held at Woods Hole Oceanographic Institution June 17-19, 2022. Rivero-Calle is front and center in black top and light blue jeans. Photo: Mai Maheigan ©WHOI.

Rivero-Calle was recently awarded a National Science Foundation Ocean Instrumentation grant to install a suite of optical biogeochemical sensors on the Reseach Vessel Savannah. The project is called BiOMe (Biogeochemical Optical Measurements).

“This is a great opportunity,” Rivero-Calle said. “I enjoyed learning from my colleagues and developing ideas for collaborations using our new sensors on the R/V Savannah.”

The workshop was held at Woods Hole Oceanographic Institution.

UGA Skidaway Institute grad student receives advanced training on the French Rivera

By MD Masud-Ul-Alam
Light, physics, sensors, satellites, and the ocean! All these are essential components of the International Ocean-Colour Coordinating Group Summer Lecture Series on Ocean Optics. I am a doctoral student at Sara Rivero-Calle’s Bio-Optics and Satellite Oceanography Lab and was one of the 24 selected participants from 19 countries. This was a training program that provided knowledge on advanced topics on marine optics and remote sensing. It was held at the Laboratoire d’Océanographie de Villefranche, which is part of the Institut de la Mer, de Villefranche at Villefranche-sur-Mer from July 18-19.

The course consisted of practical and laboratory sessions, and theory lectures. The lab work included hands-on training on how to collect the highest quality in situ data and how to calibrate different optical sensors (in situ and satellite). The theoretical lectures covered the optical properties of light, interactions with marine particles, inherent optical properties, apparent optical properties and more.

In addition, the intensive lab sessions incorporated trainings on different software and optical instrumentation, such as AC-S and HydroLight, different models for atmospheric corrections and working on a group project using Sentinel-2, and Sentinel-3 datasets.

Overall, this summer course gave me and my fellow students the opportunity to meet experts across the globe and develop networks for future collaborative research work.

Port Lympia in nearby Nice.

I am so glad I was able to participate in this course. This was such a great opportunity to meet the ocean-optics experts across the globe and make new friends to work with. Beside the course, I enjoyed the beauty of Villefranche-sur-Mer and Nice!

Alexander voted president-elect of SAML

University of Georgia Skidaway Institute of Oceanography director Clark Alexander was voted the 2022-23 president-elect of the Southern Association of Marine Laboratories (SAML) and will serve as president for 2023-2024.

SAML is a regional organization within the National Association of Marine Laboratories. It is comprised of 48 marine laboratories and governmental agencies stretching from Virginia to Texas and including Bermuda. Its purpose is to promote cooperation and effectiveness of member institutions in their work on marine and coastal resources, as well as share solutions to issues facing coastal field installations.

Alexander is a coastal and marine geologist who joined the Skidaway Institute as a post-doctoral scientist in 1989, achieved the rank of full professor in 2003 and was appointed director in 2016. He earned bachelor’s degrees in oceanography and geology from Humboldt State University in California. He went on to earn his master’s and doctoral degrees in marine geology from North Carolina State University.

As a researcher, Alexander has participated in 64 field programs from New Zealand to Siberia and has been the chief scientist on 29 oceanographic cruises with a total of more than two years at sea. He has published 92 papers in scientific journals, and, in the past decade, has received more than $4 million in direct research funding. From 2003-2017, he also served as the director of the Georgia Southern University Applied Coastal Research Laboratory on Skidaway Island.

Alexander has been very active on federal, state and regional advisory boards and has worked closely with the US Army Corps of Engineers, South Atlantic Fisheries Management Council, Governors’ South Atlantic Alliance, and the Georgia Department of Natural Resources to identify and address pressing coastal management needs. He served on the Georgia Coastal Marshlands Protection Committee and the Georgia Shore Protection Committee, which permit all major activities within the state’s marshes and beaches, from 1998 to 2006.

First grad student weekend a success

Graduate students from the University of Georgia’s Department of Marine Science gathered at UGA Skidaway Institute of Oceanography on the weekend of May 27 for a program aimed at improving graduate student retention, inclusion, well-being and a sense of belonging.

The marine science graduate students are split between the UGA Skidaway Institute and the main campus in Athens. Given the 250-mile distance between Athens and the Georgia coast, these two groups of students typically only interact during online instruction, webinars, meetings or on an occasional research cruise. They rarely gather in-person in a casual setting.

“It was a really great experience,” said UGA Skidaway Institute assistant professor Sara Rivero-Calle. “Because they are split between the two campuses, many of these students had never met in person. They had worked together remotely on assignments and seen each other through the computer screen, but this was the first time they could relax and enjoy each other’s company in real life.”

A group of students enjoying an evening out.

The event included a guest speaker, Virginia Schutte, who led a workshop on science communication and the best ways for students to market themselves. The students also organized a clean-up of some of the trails on Skidaway Island, utilizing bags from UGA Marine Extension’s trawl-to-trash program.

“The UGA marine science students had a wonderful event supported by the UGA Marine Science Department and the Skidaway Institute of Oceanography,” said Frank Mcquarrie, president of the marine sciences graduate student association. “Meeting in person was invaluable, and it reminded us that we are stronger together.”

The program was funded by a $5,000 grant from the UGA Graduate School.

Hurricane glider completes marathon mission

By Nadine Slimak and Michael Sullivan

When the Slocum glider known as NG645 was deployed about 80 miles south of New Orleans on Oct. 10, 2021, it became one of the most closely watched ocean-observing instruments in the Gulf of Mexico. That’s because it was a small robot with a big mission – to investigate features of the Loop Current and Loop Current Eddies in the Gulf as part of the Hurricane Glider Project – then navigate on a mission never attempted by an unmanned glider before.

“Our goal with this project was to deploy a glider in the Gulf of Mexico and then navigate it through the spatially variable currents of the Loop Current and into the Gulf Stream all the way around the bend of Florida up to the coast of South Carolina,” said UGA Skidaway Institute of Oceanography researcher Catherine Edwards, one of the glider team leaders and who was responsible for the glider once it rounded the tip of Florida.

The glider path is shown in red from the Gulf of Mexico to the Atlantic Ocean off the coast of South Carolina.

The trip was a test to see whether the glider could successfully navigate around Florida and up the East Coast while gaining information about multiple marine systems – all during a single mission. With no propeller or motor, it would have to do so using minimal battery power and only buoyancy to travel.

Slocum gliders, also known as autonomous underwater vehicles (AUVs), are torpedo-shaped underwater robots about six feet long and eight inches in diameter that carry instrument packages to gather data on water temperature, salinity, dissolved oxygen and other ocean parameters, depending on ocean-observation needs. The gliders use buoyancy to move throughout the water column in a vertical yo-yo pattern, taking in water to move down through the water column and expelling water to return to the surface. The wings on the glider then give it lift that allows it to move forward. When the glider surfaces, it sends data to a satellite, which beams it back to scientists in the lab. Back in the laboratory, glider pilots can update and adjust glider trajectories to ensure they remain on course, or even change their paths.

NG645’s initial mission was to gather information on the Loop Current and Loop Current Eddies, major oceanographic features in the Gulf of Mexico.

“The Loop Current is sort of an arm of the western boundary current that eventually becomes the Gulf Stream,” Edwards said. “That’s one of the major features that this project seeks to capture. Just like we’re monitoring the edge of the Gulf Stream with our gliders, these are areas where the models need the most improvement, and where our observations can have the greatest impact.”

The glider is recovered off the coast of South Carolina.

The glider was a part of the Hurricane Glider Project, a series of gliders monitoring the ocean in the Gulf, Caribbean Sea and Atlantic that are programmed to collect information on ocean parameters from areas where tropical storms and hurricanes typically form or strengthen. Gliders gather temperature and salinity readings from throughout the water column, not just at the surface, and send it back to the National Oceanic and Atmospheric Administration in near-real time to improve the accuracy of upper ocean models used to create hurricane intensity forecasts. This was the first-time glider operators attempted such an ambitious mission.

“There were so many firsts during this mission,” said Kerri Whilden, a researcher from Texas A&M University, who led the collaboration in the Gulf before handing it off to Edwards as it rounded Key West and navigated up the East Coast. “It would be the first time we started piloting a glider in the Gulf and then sent it through the Gulf Stream around the tip of Florida, then on to South Carolina. It involved coordinating a lot of different organizations to deploy the glider, to pilot it and then to retrieve it at the end of its mission. It was a big team collaboration for sure.”

In addition to UGA Skidaway Institute and Texas A&M, other partners in the project included the Naval Oceanographic Office, the U.S. Integrated Ocean Observing System, the Gulf of Mexico Coastal Ocean Observing System, the Southeast Coastal Ocean Observing Regional Association, the Underwater Glider User Group, the University of Southern Mississippi, NOAA’s Atlantic Oceanographic and Meteorological Laboratory and the Woods Hole Oceanographic Institute.

Planning is under way for a repeat mission in 2022.

Semester@Skidaway brings undergrads to UGA Skidaway Institute

The fall semester 2022 marks a major milestone in the growth of the University of Georgia Skidaway Institute’s education mission beyond its historical role as a research laboratory. The Semester@Skidaway domestic field study program is a significant part of the UGA Department of Marine Sciences new undergraduate ocean sciences major. A small cohort of ocean sciences majors are spending the entire fall semester in residence at UGA Skidaway Institute taking classes and learning how to conduct marine research.

Assistant professor Sara Rivero-Calle teaches one of the undergraduate courses with students at Skidaway Institute and in Athens, as seen in the monitor.

The Semester@Skidaway serves, essentially, as a capstone type experience for students before they graduate,” said Semester@Skidaway program director Clifton Buck. “The students have the opportunity to take a number of courses that are taught here, but also they have the chance to take courses that are much more immersive and hands on.”

The research-based activities include field surveys, collecting samples from the environment, returning them back to the laboratory and analyzing them for chemical, biological and physical parameters.

“They make a scientific journey from actually being out in the field and then into the laboratory, to analyze the data and think about it critically” Buck said.

Semester@Skidaway students (l-r) Taylor English, Dillon Doomstorm, Ava Meier and Sarah Belcher

The students take five three-credit courses that cover a wide range of marine science topics including data analysis techniques and marine science field methods. They also study the unique South Atlantic Bight system located off our coast under the instruction of associate professor Catherine Edwards. A highlight of the semester will be a cruise aboard the Research Vessel Savannah. Professor Jay Brandes teaches a course that focuses on the planning and preparation needed for a successful research cruise.

“They’ll go on a two-day cruise just offshore and collect samples, apply some of the things they’ve learned in the laboratory class and bring those samples back and work with them,” Buck said. “And so again, they will take it from the planning stage through the execution, through the sample analysis and data interpretation.”

The fall 2022 group consists of just a handful of students. As the ocean sciences major grows, Buck expects later cohorts to include about 24 students.

“The Semester @ Skidaway program brings highly motivated ocean science majors to the Skidaway campus to experience hands-on and research-based instruction,” UGA Skidaway Institute Director Clark Alexander said. “This influx of young, enthusiastic students enhances the programs at Skidaway by their presence, and we are excited to be teaching tomorrow’s scientists and informed citizens.”

Cutting edge survey charts Georgia’s artificial reefs

– Beginning in 1970, the Georgia Department of Natural Resources built a series of artificial reefs to provide habitat for marine life. However, until recently, there were gaps in some of the key information about those reefs, such as the precise locations of the materials placed on the bottom and water depth over the materials. Now, researchers at the University of Georgia Skidaway Institute of Oceanography are using cutting-edge bathymetric side-scan sonar and high-resolution geographic positioning systems (GPS) to provide coastal managers and fishermen a detailed picture of the location and condition of reef materials.

Georgia’s shelf is relatively shallow and extends approximately 80 miles offshore before dropping into the deep ocean. Most of the shelf bottom consists of shifting sand, which does not provide the kind of conditions to develop and support diverse reef communities.

“Much of the continental shelf is like a vast sandy desert,” UGA Skidaway Institute scientist Clark Alexander said. “So, what we need is more hard substrate, because that is really the most important thing for establishing stable live-bottom communities.”

A battle tank is pushed into the ocean to form part of an artificial reef. Photo credit: Georgia DNR.

Over the past 50 years, the state has placed hard-surface materials in 18 sites, each about 15 square kilometers in size. Eight of the sites are located along the coast approximately 10 miles off shore and another eight approximately 25 miles off shore. There are also two “beach reefs” that are closer to shore and accessible to fishermen with smaller boats. The reefs are made up of a wide range of materials, including old ships, battle tanks, pieces from the original Talmadge Bridge, retired subway cars from New York City, concrete pipes and pilings, and purpose-built, concrete tetrapods.

“The materials that were placed on the bottom in the 1970s and 1980s were sunk in place or deployed from barges using Loran-C, a radio-based navigation system that was significantly less accurate than current GPS, or dropped from Army helicopters, so their precise locations are not always exactly known,” Alexander said. “In addition, we have had a number of hurricanes and winter storms come through or offshore Georgia, and we don’t know whether some of the material has been moved from its original location.”

Alexander proposed a program to survey the reefs and develop a more accurate set of data on their locations and characteristics, which was subsequently funded through the Georgia Coastal Management Program, administered by the Georgia Department of Natural Resources Coastal Resources Division.

Marine life attracted to one of Georgia’s artificial reefs. Photo credit: Georgia DNR.

“Our goals were to document the status of what is on the bottom, and to give more precise locations for the objects we identify,” Alexander said. “We used real-time kinematic GPS, so we know within a few centimeters where things are on the bottom.”

Alexander’s team began field work in 2018 and continued into 2021, using the 28-foot RV Jack Blanton. They spent an average of six days surveying each reef. They started with the beach reefs to work out any kinks in the planned survey approach and then moved on to the reefs 10 miles off shore. Along with high-resolution GPS, the team used an interferometric side-scan sonar that gives the depth and co-registered side-scan sonar imagery that provides images of the seafloor and objects sitting on it.

“Based on an object’s general location, and existing location data, we were able to make some good guesses as to ‘Oh, that must be a certain barge or ship’ and so on,” he said. “And we found a few objects that were not on existing maps and several others that had fragmented into several pieces since being placed.”

Another important parameter the team measured was the amount of clearance between the various structures and the ocean surface.

“You don’t want to have to worry about anything you put down being a hazard to navigation,” Alexander said. “Ten kilometers off shore, you are in about 10 meters of water or so, about 30 feet. So, if one of these sunken vessels was sticking up a significant height above the bottom, that is something you need to know.”

Alexander and DNR are making plans to survey the eight reefs that are about 25 miles off shore. They present a greater challenge than the reefs closer to shore. The longer distance means greater transit time and less time on-station actually conducting the survey. The team would also be constrained by the weather. Conditions must be very good and forecast to remain calm throughout both the transits and survey.

“Because when you are that far offshore, you are at the mercy of sea conditions, which can change quickly” Alexander said.

The data Alexander’s team collected is now being added to the DNR’s marine artificial reef fishing website. These new data products enhance the data available to anglers, and now allows users to zoom in to the individual features, see what they look like, and how they are distributed in relation to other features on the bottom. The data collected by the project can be found on the DNR’s artificial reef website: https://coastalgadnr.org/HERU/offshore

Paper by UGA Skidaway Institute scientist featured in prominent journal

A research paper by University of Georgia Skidaway Institute of Oceanography scientist Natalie Cohen was selected as the cover article in the February issue of the journal Nature Microbiology.

The paper, “Dinoflagellates alter their carbon and nutrient metabolic strategies across environmental gradients in the central Pacific Ocean,” was based on data a team of fellow researchers collected on a 2011 cruise in the equatorial Pacific Ocean. Dinoflagellates are tiny plankton, many of which are capable of using photosynthesis in addition to eating small prey.

They play a fundamental role in the biogeochemical cycles in the ocean by transferring energy from lower to higher life forms and also transporting carbon vertically in the water column.

“Some dinoflagellates can travel vertically in the water column using their flagella,” said Cohen, the lead author of the paper. “Some are also capable of bioluminescence which can light up the sea surface at night.

“They are found throughout the world’s oceans and an important component of the ocean carbon cycle.”

When the scientists analyzed the data from the cruise, they discovered a greater abundance of dinoflagellates than they expected. Researchers found the dinoflagellates were abundant both in the sunlit surface ocean and also in deeper, darker waters. This relative abundance in two drastically different environments lead the researchers to conclude the dinoflagellates must change how they function as they move from one depth zone to the other.

Cohen conducted the research while she was a postdoctoral fellow at Woods Hole Oceanographic Institution.

Along with Cohen, the other members of the research team include Matthew McIlvin, Dawn Moran, Noelle Held, Jaclyn Saunders, Mak Saito and Michael Brosnahan, all from Woods Hole; Nicholas Hawco from the University of Southern California; Giacomo R. DiTullio from the College of Charleston; Carl Lamborg from the University of California, Santa Cruz; and John McCrow, Chris Dupont, Andrew Allen, all from the J. Craig Venter Institute.

The entire paper can be viewed at the journal website.

UGA Skidaway Institute’s Edwards granted tenure

The University of Georgia has granted tenure to UGA Skidaway Institute of Oceanography / Department of Marine Sciences scientist Catherine Edwards. Edwards was also promoted from assistant professor to associate professor, effective Aug. 1.

OLYMPUS DIGITAL CAMERAEdwards is a physical oceanographer, with broad interdisciplinary interests in marine sciences and engineering. She earned a B.S. in physics with highest honors from the University of North Carolina at Chapel Hill, and worked as an ocean modeler at the U.S. Naval Research Laboratory before earning her Ph.D. in physical oceanography from the University of North Carolina at Chapel Hill. She joined Skidaway Institute in 2010.

Edwards’ research focuses on answering fundamental questions in coastal oceanography and fisheries sciences with autonomous underwater vehicles (AUVs). Using AUVs, also called gliders, she and her team are developing novel ways to optimize their use with engineering principles and real-time data streams from models and observations.

While at UGA Skidaway Institute, Edwards has been awarded more than $2 million dollars on 12 projects totaling more than $12 million from NOAA/Navy sources, the Gulf of Mexico Research Initiative and four different programs within the National Science Foundation. As the founder of a regional glider observatory, she serves as the lead scientist in a new project that places gliders in the paths of hurricanes to better predict their intensity at landfall. Edwards is a co-primary investigator in a large $5 million observational program studying exchange between the coastal and deep ocean at Cape Hatteras. In an effort funded by NSF’s Smart and Autonomous Systems program, Edwards is also working with researchers from Georgia Tech and Gray’s Reef National Marine Sanctuary to utilize gliders and acoustic tagging to track fish migrations.